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Abstract-A phenomenological model of eddy heat transport in natural convection with volumetric energy 
sources at high Rayleigh numbers is developed in this study. The model is applied to the problem of thermal 
convection in a horizontal heated fluid layer with an adiabatic lower boundary and an isothermal upper wall. 
A correlation for mean Nusselt numbers is obtained for steady heat transfer. Distributions of the mean 
turbulent temperature, the eddy heat flux, and production of thermal variance in the heated fluid are 
presented. The mechanism of turbulent thermal convection at high Rayleigh numbers is discussed. 

Comparison is made with existing experiments and found to be good. 

NOMENCLATURE 

specific heat ; 
acceleration due to gravity; 

dimensionless temperature at any rf, 
2k(T- T,)/qL?; 
dimensionless lower wall temperature, 

2k(T,-T&C; 
thermal conductivity; 
local length scale; 
layer thickness; 
Nusselt number, qC/2k(T, - T,); 
volumetric energy sources; 
local heat flux at any z; 
local Rayleigh number, g/?AT*I*‘/uv; 
internal Rayleigh number, gflqL5/2kav; 
mean temperature at any z; 
fluctuating temperature; 
upper surface temperature; 
lower surface temperature; 
characteristic local temperature, T - Tl ; 
vertical fluctuating velocity in z direction; 

uT’/u(T,- T,)/L; 

Z, vertical coordinate, 0 < z < L; 

Greek symbols 

BY isobaric coefficient of thermal expansion; 

Eli* eddy diffusivity for heat; 
6, conduction sublayer thickness; 

tl? dimensionless distance from the lower wall, 

zlL; 
P? density ; 

PO> density of fluid at the lower surface; 

v, kinematic viscosity ; 
GL, thermal diffusivity ; 

Pr, Prandtl number, v/cc 

Subscripts 

1, 
0, 

upper surface; 
lower surface. 

Superscripts 

fluctuating quantity; 
* local variable. 

INTRODUCTION 

THE STUDIES ofvolumetrically heated fluid layers have 
recently been of great interest to both analysts and 
experimentalists in the area of nuclear reactor design 
and safety. In particular, the assessment of postac- 
cident heat removal in fast reactors requires fundam- 
ental knowledge of natural convection heat transfer 
with volumetric heat release at high Rayleigh numbers 
(usually of the order 1 x lo6 times the critical value of 
linear stability theory or higher). The thermal con- 
vection flow is thus in the fully turbulent heat-transfer 
regime. To determine the rate and mechanism of heat 
removal from boundary surfaces of the heated fluids, 
which are related to the extent of melting attack of 
surrounding materials, eddy heat transport within the 
fluids must be investigated. The purpose of this study is 
to develop an analytical method to facilitate the 
evaluation of the turbulent heat-transfer characteris- 
tics as well as the average boundary heat fluxes of a 
volumetrically heated horizontal fluid layer. Results of 
this study can be useful to other technological areas 
including environmental science, geophysics, and as- 
trophysics [l-3]. 

Many studies have been done in recent years in the 
area of natural convection with volumetric energy 
sources. For an internally heated fluid layer with an 
adiabatic lower boundary and an isothermal upper 
wall, work has been performed by Tritton and Zarraga 
[4], Roberts [S], Fiedler and Wille [6], Schwiderski 
and Schwab [7], and recently by Kulacki and Nagle 
[S] and Kulacki and Emara [9]. For the case with 
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equal upper and lower surface temperatures, heat- 
transfer studies have been carried out by Kulacki and 
Goldstein [lo], Catton and Suo-Anttila [ll], and 
Jahn and Reineke [ 121. Recently, theoretical work on 
horizontal fluid layers with combined internal and 
external Rayleigh number effects has been reported by 
Suo-Anttila and Catton [13], Baker et al. [14], and 
Cheung and Baker [lS]. Most of these studies, how- 
ever, are either restricted to thermal convection at low 
Rayleigh numbers (compared to the corresponding 
situation in a hypothetical core meltdown event) or 
centered on mean transport and the overall nature of 
flow. 

To study high-Rayleigh-number heat transfer and 
to explore the mechanism of turbulent thermal con- 
vection, a phenomenological model of eddy heat 
transport is developed in the present study. The model 
considers the eddy heat flux as a function of a local 
Rayleigh number of the flow. The local Rayleigh 
number is defined in terms of a characteristic local 
length scale and a characteristic local buoyancy differ- 
ence. Average heat-transfer coefficients as well as some 
key turbulent energy transport features are obtained 
for a horizontal fluid layer with an adiabatic lower 
boundary and an isothermal upper wall. Comparison 
is made, where possible, with existing measurements. 

EDDY HEAT TRANSPORT MODEL 

Thermal convection in a volumetrically heated fluid 
layer at high Rayleigh numbers is characterized by the 
intensive turbulent mixing in the region away from the 
wall. The internal energy generated within the fluid in 
such a region is usually removed effectively toward the 
wall by eddy heat transport. In general, the local heat 
flux, Q*, across the fluid layer is equal to the sum of the 
rate of molecular and eddy heat transfers: 

Q* = pC,t’T’-kg. (1) 

Following the conventional definition of the eddy 
diffusivity for heat, we have 

UT’ = -_E 5. 
H dz 

(2) 

In terms of sH, the local heat flux becomes 

Q*=-k I+: g. ( > (3) 

The ratio s,,/tl is a local kinematic parameter and must 
depend on the local heat-transfer characteristics of the 
fluid. On the basis of dimensional analysis, the eddy 
thermal diffusivity can be expressed as a function of the 
Prandtl number of the fluid and the local Rayleigh 
number of the flow. The latter is defined by 

AB*l*3 
Ra*=------, 

c(V 
(4) 

where I* is a characteristic local length scale and AB* is 
a characteristic local buoyancy difference, where buoy- 

ancy is defined by 

Be= ‘-” 

( > 
__ 9. (5) 

PO 

Physically, Ra* is a measure of the local buoyancy 
effect on the flow. As a result, sH must be a monotoni- 
cally increasing function of Ra*. Using a simple power- 
law expression, the eddy thermal diffusivity can be 
written as 

EH 
- = aRa*b. (6) 
c( 

The effect of Prandtl number on &n will be discussed 
later. With proper choice of AB* and l*, a and b in 
equation (6) are universal constants. 

The local buoyancy difference can be related to a 
characteristic local temperature using the Boussinesq 
approximation. By choosing the characteristic local 
temperature as the temperature difference between the 
fluid and the upper plate, i.e. AT* = T- TI, the result 
is 

AB* = SPAT*. (7) 

The characteristic length scale is chosen to be a local 
variable which measures the degree of freedom for a 
fluid to undergo convective motion. Using a power 
series expansion, this local variable can be expressed 

by 

1* 
-= co+c,v]+c,~2+c3r/3+c4t74+ . . . . 
L 

(8) 

where 11 = z/L is the dimensionless distance from the 
lower wall and Ci (i = 0,1,2,3,. . .) are unknown 
coefficients to be determined. Since the fluid must 
come to rest at the wall and is freest to move in the 
center portion of the layer, we must have the following 
boundary conditions: 

I 

1* 
-=0 for?=0 orl=l 
L 

(9) 

df_r_=O forq=). 
dq L 

Combination of equations (8) and (9) results in a new 
expression for l*/L as 

I*/L = 1 Cm[n(l - I?)lrn, (10) 

where, to begeneral enough, m is not necessary to be an 
integer. 

In the wall region (but away from the stagnant fluid 
sublayer to be discussed in the following section), the 
mean temperature is observed to vary inversely with 
the square of the distance from wall [lo, 16, 171. This 
implies that the eddy thermal diffusivity must vary 
according to the third power of the distance from wall 
in such a region. Mathematically this can be written as 

&H - v3 forq-+O 

aH - (1 -v)~ for q --* 1. 
(11) 
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From equations (4) and (6), the eddy thermal diffusivity 
can be related to the characteristic local length scale by 

%I N I*‘*. (12) 

’ must vary in a manner Thus, in the wall region, 
according to 

{ 

I* N ? l/b 

I* N (l-9)1’* 

Combination of equations 

1* 

for?-*0 

for q + 1. 
(13) 

10) and (13) gives 

t = C[r/(l -rj)]l’b. (14) 

Substituting equations (4), (7), and (14) into equation 
(6), the eddy thermal diffusivity becomes 

CV(l - V,l”> (15) 

where the unknown coefficient C in equation (14) has 
been absorbed in a. In view of equation (6), the local 
Rayleigh number can be redefined as 

Ra* = gW’*p 
--&-- [VU -4)13'*. (16) 

The constants a and b are to be determined in the next 
section. 

THE UNIVERSAL CONSTANT?3 

Consider a stationary process of turbulent thermal 
convection in a volumetrically heated fluid layer with 
an adiabatic lower boundary and an isothermal upper 
wall (Fig. 1). A simple heat balance on the fluid gives 

$e* = 4, (17) 

UPPER WALL (ISOTHERMAL1 

8 -UPPER STAGNANT 
FLUID SUBLAYER 

i-- LOWER WALL (ADIABATIC1 

FIG. 1. Schematic of the volumetrically heated horizontal 
fluid layer. 

where q is the rate of internal heat generation in the 
fluid. Substitution of equation (3) for Q* in equation 
(17) yields 

(18) 

The boundary conditions are 

dT 
z=o, -=o 

dz 

z = L, T = Tl. 

Integrating equation (18) once and using the boundary 
condition at z = 0, we have 

i 

dT -42 

dz= k(l+ &H/d 

z=L, T=T,. 
(20) 

Substituting equation (15) into equation (20) and 
normalizing the resultant equation, we obtain 

fd0 -2fl 

i 

L= 

drl 1 +aRa~@*[ff(l -ff,]” 

T/=1, @=O 
(21) 

where 

T-T, 
@ = dimensionless temperature, - 

qL?,I2k 

s&L5 
Ra, = internal Rayleigh number, ~ 

2kuv . 

By definition, the mean Nusselt number at the upper 
surface can be written as 

Nu = 
9L 

2k( T, - T,)/L ’ 
(22) 

where To is the lower plate temperature and qL is the 
surface heat flux at the upper wall. In dimensionless 
variables, equation (22) becomes 

Nu = @or, (23) 

where @ 0 is the value of @ at the lower boundary. For 
given values of a and b, a unique relation between the 
mean Nusselt number and the internal Rayleigh 
number can be obtained by integration of equation 
(21). Alternatively, if the NWRa, relationship is known 
over a wide range of Rayleigh numbers, the universal 
constants a and b can be determined. In what follows, 
we introduce a conduction sublayer model with which 
a relationship between Nu and Ra, can be derived. 

Consider again the horizontal heated fluid layer 
shown in Fig. 1. In the wall region (both the lower and 
the upper surfaces), there is a stagnant fluid sublayer 
(the conduction sublayer) through which heat transfer 
is by conduction alone. Away from this region, the 
fluid is in the state of intensive turbulent mixing, 
especially for high Rayleigh number convection. The 
overall heat-transfer resistances of the layer must 
therefore be equal to that of the stagnant sublayer. 
Since the lower plate is insulated, the local heat flux 
near the lower boundary must be very small. Hence, 
the total temperature drop across the fluid layer must 
occur practically in the conduction sublayer near the 
upper wall. The thickness of the sublayer, 6, must 
therefore depend upon the total temperature difference 
of the layer as well as other local heat-transfer 
parameters. From dimensional considerations, we 
have 

s-r sB(T,-T,) -1’3 1 . (24) 
L av _I 
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Table I. Comparison of heat-transfer correlations for horizontal fluid layers with an adiabatic lower boundary 
and an isothermal upper wall 

Study 

Fiedler- 
Wille [6] 

Correlations 

Nu = 0.262Ra$‘.228 

RUl 

2 x 1os- 
2.6 x IO* 

Mean Nusselt number at indicated values of Ru, 

1 x106 1 x 10’ 1 x lo* 1 X 10’ 1 x 1010 I x IO” 

6.114 10.335 17.470 -- 

Kulacki- 
Nu 

1.5 X 105m 
Nagle [8] = 0.127R~:,~~ 2.6 x lo9 4.016 7.142 12.699 22.584 

Kulacki- 
Nu = 0.2015Ra~z26 1.05 x 104p 

Emara [9] 2.17 x 10” 4.574 7.696 12.950 21.190 36.666 61.698 

Present Nu = 0.124Ray.25 
Theory Nu = 0.158Ru;=’ Ra, > 1 x lo6 4.252 7.539 13.134 22.553 38.358 64.850 

For steady heat conduction through a heat-generating 
slab, the following relation can be derived: 

Q, = [WG-T,)q+Qi]1’2, (25) 

where Qe and Qr are heat fluxes at the lower and upper 
surfaces ofthe slab, respectively. Applying this result to 
the conduction sublayer of thickness 6, we have 

qL = [2k(T,- T~)q+q2(L-6)2]“2. (26) 

At high Rayleigh numbers, the conduction sublayer 
should be very thin compared to the fluid layer as a 
whole, i.e. h/L cc 1. The above equation thus reduces to 

s = m-T,) 
(27) 

qL 
~ , 

Substituting the expression for 6 into equation (24), we 
obtain, after rearrangement, 

(28) 

From the definitions of Nu and Ra,, we have 

Nu - Ra,‘14. (29) 
Thus the mean Nusselt number varies according to the 
quarter power of the internal Rayleigh number. Sim- 
ilar approach has been used by Hollands et al. [IS] to 
treat thermal convection problems of the 
Rayleigh-Benard type. 

The procedure of determination of the universal 
constants a and b is quite obvious. Assuming a given 
pair of a and b, equation (21) is integrated by the 
Runge-Kutta method to obtain values of or,, cor- 
responding to two different values of RaI (one is chosen 
to be ten times larger than the other). The values of@, 
are used to obtain the corresponding values of Nu. For 
a given Ra,, a set of(a, b) can be determined so that the 
calculated Nu-Ra, relation satisfies equation (29). The 
universal constants a and b are chosen such that 
equation (29) can be best fitted over a wide range of 
Ra,. Following this procedure, the universal constants 
are determined to be a = 0.051 and b = 0.87. From 
equations (15) and (16) we have 

a 

gpAT*t3 
(30) 

Ra* = -y [VU -1)13.448 

k)KlJLACKI-EMARA 

I , I I I I 

106 IO' 108 109 IO'O IO" 

Aa1 

FIG. 2. Heat transfer from the upper surface of the fluid layer. 

The mean Nusselt number is calculated based on 
equation (30) and shown graphically in Fig. 2. Also 
shown in the figure are the available empirical cor- 
relations for comparison. The calculated Nu-Ra re- 
lation can be represented by 

Nu = 0.124Ra0.25 (31) 

with an absolute error less than 7% over the range 
1 x lo6 < Rar < 1 x 10”. Using a least squares tech- 
nique, the numerical data can be fitted equally well by 
a correlation of the form 

Nu = 0.158Ra0.237. (32) 

Some calculated numerical values of Nu are given in 
Table 1. The theoretical prediction is found to be in 
good agreement with the experimental data over the 
entire range of Rayleigh numbers under consideration. 

MECHANISM OF TURBULENT 
THERMAL CONVECTION 

1. Mean turbulent temperaturejields 
The calculated mean temperature profiles for dif- 

ferent Rayleigh numbers are shown in Fig. 3. Experim- 
entally observed temperature distribution [S] at Ra, 
= 9.3 x 10’ is also plotted in the figure for comparison. 

For Ra, > 1 x lo’, the temperature profiles are found 
to be essentially flat except in the region near the upper 
surface. Because of the intensive turbulent mixing in 
the core, the stagnant fluid sublayers at the lower and 
upper surfaces are restricted to very thin regions. Since 
the lower wall is insulated, the temperature drop 
across the lower stagnant fluid sublayer is negligible. 
As a result, there is practically no thermal sublayer in 
the lower wall region, especially at high Rayleigh 
‘numbers. Temperature gradient is found to be impor- 
tant only in the region close to the upper wall. This 
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Q 

FIG. 3. Dimensionless temperature distribution in the fluid 
layer at various Rayleigh numbers. 

result supports the conduction sublayer model accord- 
ing to which the total temperature drop across the fluid 
layer is considered to occur in the conduction sublayer 
at the upper surface. The thickness of the conduction 
sublayer is found to be of the same order of the 
dimensionless temperature at the lower boundary (Fig. 
3), i.e. 6/L - @,,. From equation (23), the value of @)e 
is the reciprocal of the mean Nusselt number. Thus, the 
thickness of the conduction sublayer varies according 
to 6/L - Nu-‘. This dependence has been observed 
experimentally in both types of turbulent thermal 
convections with and without internal energy sources 
[8,10,17]. 

At Ral - 1 x 106, the convection flow is still within 
the transition regime. Turbulent mixing in the center 
core is not so intensive compared to those at higher 
Rayleigh numbers. Consequently, eddy heat transport 
is less effective at this Rayleigh number, so that the 
mean temperature gradient is not negligible in the 
turbulent core. At the same time, temperature drop 
across the lower stagnant fluid sublayer becomes 

important. The thermal boundary sublayer at the 
lower surface, though much less remarkable than the 
one at the upper wall, is no longer trivial (Fig. 3). Thus 
the conduction sublayer model fails to apply at Ra, 
< 1 x 1.06. 

2. Eddy heat transport and production of thermal 
variance 
The rate of eddy heat transfer at different locations 

of the heated fluid layer can be related to the internal 
Rayleigh number and the local mean temperature by 
use of equations (2), (21), and (30). In dimensionless 
variables, the result is 

(33) 

where W@ ’ is the dimensionless eddy heat transport 
defined by 

(34) 

From considerations of the turbulent energy equation, 
the production of thermal variance is represented by 

---i the term VT (dT/dz). In dimensionless variables, this 
term can be related to the internal Rayleigh number 
and the mean turbulent temperature field as 

(35) 

The calculated eddy heat transport and production of 
thermal variance are presented in Figs. 4 and 5, 
respectively, with RaI as the parameter. 

The eddy heat flux is found to increase almost 
linearly with distance from the lower wall and reaches 
a peak value at a location just outside the conduction 
sublayer at the upper boundary. This peak value is a 
function of the internal Rayleigh number and is found 
to be proportional to Ra:/4. The region of linear eddy 
heat transport corresponds closely to the region of 

60 

0.2 0.4 0.6 0.8 1.0 

7 
FIG. 4. Dimensionless eddy heat transport in turbulent ther- 

mal convection with uniform volumetric energy sources.. 
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77 

FIG. 5. Production of thermal variance in turbulent thermal 
convection with uniform’volumetric energy sources. 

constant temperature distribution. This indicates that 
turbulence is the predominant mode of heat transfer in 
those regions. For a volumetrically heated fluid layer, 
the local heat flux must be a linearly increasing 
function of distance from the lower wall. Therefore, the 
eddy heat flux distribution must also be linear in the 
turbulent core. As Ra, increases, both the eddy heat 
flux and the thickness of the linear region increase. A 
similar result was observed experimentally by Kulacki 
and Goldstein [16] in a horizontal layer with equal 
surface temperatures. The linearity of the eddy heat 
transport in the turbulent mixing core seems to be 
independent of the boundary conditions at the upper 
and lower surfaces, provided that the internal Rayleigh 
number is high enough to maintain a strong turbulent 
mixing in the core. 

As shown in Fig. 5, production of thermal variance is 
essentially zero in the lower 7595% of the layer, 
depending upon the corresponding values of Ra,. The 
production is found to be significant only near the 
upper wall. For all Ra,, peak values are obtained in 
production in the region of the order of 6 from the 
upper surface. This is quite expected since within the 
turbulent core the mean temperature gradient is 
largest there. The occurrence of the peak production 
corresponds approximately to the location of max- 
imum eddy heat flux. Physically this result is in good 
agreement with the observation that the temperature 
fluctuation is very small in the lower portion of the 
layer and is greatest at a position near the upper wall 

PI. 
During the heat transfer process, the turbulent 

thermal energy produced in the upper wall region is 
being diffused and convected gradually into the turbu- 
lent mixing core. At the same time, a portion of the 
turbulent energy is being dissipated by the mixing 

process. At steady state, the overall balance is such that 
the turbulent energy distribution be maintained con- 
stant in the mixing core. For larger Ra,, the peak 
production is larger, resulting in higher turbulent 
energy level in the core. This increases the rate of eddy 
heat transport and thus the total rate of heat removal 
from the heated fluid layer. 

3. Effect ofPrandt1 number 
The eddy heat transport model described above 

does not include the effect of Prandtl number on 
turbulent thermal convection in a horizontal heated 
fluid layer. In general, the eddy thermal diffusivity 
given by equation (30) is considered to be valid only for 
moderate Prandtl numbers. For fluids with very large 
or very small Prandtl numbers, the thickness of the 
conduction sublayer may not correspond to that ofthe 
stagnant fluid sublayer. In particular, if Pr is very 
small, the conduction sublayer will be very thick 
compared to the stagnant fluid sublayer. If Pr is very 
large, on the other hand, there will be a thin con- 
duction sublayer imbedded in a thick stagnant fluid 
sublayer. This physical argument has been used by 
Kraichnan [19] and Long [20] to estimate the effect of 
Prandtl number on turbulent Rayleigh-Benard con- 
vection. Depending on Pr, the conduction and stag- 
nant fluid sublayers may not overlap each other. 
Therefore, turbulent mixing may or may not be 
important at the edge of the conduction sublayer. 
Hence, for extreme values of Pr, the ratio +,/a as given 
by equation (30) must be modified. One possible way of 
doing that is to use a modified local Rayleigh number, 

Ran*lodiried 1 in place of Ra* in equation (30), where 

R4kadified = 
g/IAT*l*3 
%1 +“vl -n = Ra* Pr”. (36) 

The constant n in equation (36), however, must be 
determined by experiments. 

SUMMARY AND CONCLUSIONS 

Natural convection in a volumetrically heated fluid 
layer at high Rayleigh numbers is treated analytically 
by introduction of the eddy heat transport model. The 
model enables the determination of the boundary heat 
fluxes, the mean turbulent temperature fields, the 
distributions of eddy heat transport and production of 
thermal variance. At high Rayleigh numbers, the mean 
temperature is found to be essentially constant through- 
out the layer except in a sublayer region near the 
upper wall. The thickness of such a region is found to 
be inversely proportional to the mean Nusselt number. 
Outside the sublayer region, the distribution of eddy 
heat flux is linear for all Rayleigh numbers under 
consideration. Production of thermal variance is neg- 
ligible in the lower 75595% of the layer and is greatest 
near the upper boundary. Comparison of the heat 
transfer predictions with measurements shows an 
excellent agreement within the turbulent thermal 
convection regime. 

The present approach provides a simple method of 
determination of the average and the turbulent heat- 
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transfer characteristics in a volumetrically heated fluid 
layer. So far, this has been the first attempt to treat heat 
transfer problems of this type without having to 
consider the stability of the flow. It is felt that, in terms 
of the local Rayleigh number, the eddy heat transport 
model described in this report can be generalized to 
horizontal fluid layers heated from below and to cases 
with combined internal and external Rayleigh number 
effects. Work is being done in this direction at Ar- 
gonne. Results will be reported in the near future. 
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CONVECTION NATURELLE DANS UNE COUCHE FLUIDE AVEC CHAUFFAGE 
VOLUMIQUE AUX NOMBRES DE RAYLEIGH ELEVES 

R&urn&-On adivelopp& dans cette Ctude un modtle ph&omtnologique du transfert de chaleur turbulent 
en convection naturelle avec sources d’ttnergies volumiques, aux nombres de Rayleigh &lev+%. Le modble 
est appliqut au problbme de la convection thermique dans une couche horizontale de fluide chauffk avec 
une front&e inf&ieure adiabatique et une paroi superieure isotherme. Une formule est obtenue donnant 
le nombre de Nusselt moyen en rkgime thermique itabli. On pr&sente les r&hats relatifs aux distributions 
de tempkrature moyenne, de flux de chaleur turbulent et de production de variance thermique dans le 
fluide chauffk. On discute les mecanismes de la convection thermique turbulente aux nombres de 

Rayleigh irlevts. La comparaison effectuire avec les experiences existantes a fourni un bon accord. 

NATURLI~HE KONVEKTION IN EINER MIT KONTINUIERLICH OBER 
DAS VOLUMEN VERTEILTEN WARMEQUELLEN VERSEHENEN FLUIDSCHICHT 

BE1 HOHEN RAYLEIGH-ZAHLEN 

Zusammenfassung-Es wird phiinomenologisch ein Model1 des turbulenten Wlrmetransports bei natiir- 
lither Konvektion mit kontinuierlich iiber das Volumen verteilten Wlrmequellen bei hohen Rayleigh- 
Zahlen entwickelt. Das Model1 wird angewandt auf das Problem der thermischen Konvektion in einer 
horizontalen, beheizten Fluidschicht mit adiabater Unterseite und isothermer Oberseite. Fiir den 
stationgren Fall wird eine Beziehung fiir die mittlere Nusselt-Zahl aufgestellt. Die Verteilung der 
Grtlichen, zeitlich gemittelten Temperatur des WIrmestromes und die Bildung thermischer Unterschiede 
im beheizten Fluid werden angegeben. Der Mechanismus der turbulenten natiirlichen Konvektion bei 
hohen Rayleigh-Zahlen wird diskutiert. Der Vergleich mit vorhandenen Versuchsergebnissen zeigt gute 

Ubereinstimmung. 
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CBO6OQHAII KOHBEKL&fCl B CJIOE mMAKOCTM 
C 06bEMHbIMM TEFlJlOBbI~EJIMTEJl5IMM I-IPH 

I;OJlbUIMX YMCJIAX PEJlEIi 

AHHOTZWHSI - Paspa6oTana &HOMeHOnOWIeCKaR MOAenb Typ6yneHTtIoro CB060~HOKOHBeKTUB- 
~Oro nepeHoca Tenna nps 6onbmsx wcnax Penes w HanWwiH 06~MHbIx HCTOSHHKOB 3HepreH. C 
nordombm naHHofi Monena peluaeTcB 3anara Tennoeofi KOHB~KUWH B ropn30HTanbHotd Harpe- 
BaeMOM CnOe XGi~KOCTH,OrpaHH'ieHHOM CHH3y ama6armecKo8 rpaHHuefi,a CBepXy - ki30TepMH- 
YeCKO~CTeHKO~.~n~C~~H~X3Ha~eHA~~HCna~yCCenbTa~Ony~eHOKOp~n~uHOHHOeCOOTHO~eH~e 
nm CTauHoHapHOrO npouecca Tennoo6MeHa. npencTaBneHb1 npO@inH cpemieti Tehmeparypbr 
Typ6yneHTHOrO IIOTOKa XWIIKOCTU, Typ6yfleHTHOr0 TeIlnOBOrO IlOTOKa H IlynbCauHH TeMlTepaTypbI 
B HarpeTOti WHaKOCTH. PaCCMOTpeH MeXaHA3M Typ6yneHTHOii TellnOBOfi KOHBejUiW ITpI 6onbtuex 
WCnaX Penen. nOily'leHHble pe3ynbTaTbI CpaBHHBaKITCR C HMeH)LliHM)1CR 3KCllepWMeHTanbHblMU 

DaHHblMB H Ha6nhmaeTcIIXOpOLLIeeCOOTBeTCTBHeMexqyHHMH. 


